ASSESSMENT OF SEED CAKE AND FERMENTED SLURRY OF JATROPHA SEED AS BIO-FERTILIZER

Mohammed M.O., Abdalrhaman M.S.*

Department of Agricultural Biotechnology, Faculty of Agriculture, University of Khartoum, Sudan *Email: Abdalrhaman.ms@gmail.com

Abstract

The objectives of this study were to evaluate the seed cake and fermented slurry of Jatropha seed as biofertilizer. The chemical analyses showed that the seed cake has 6.3% nitrogen, 0.9% phosphorus and 1.2% potassium. While fermented slurry showed 6.65% nitrogen, 5.3% phosphorus and 0.71% potassium. The Fermentation increased nitrogen content from 6.3 to 6.65 and Phosphorus from 0.9 to 5.3 while the potassium was decreased from 1.2 to 0.71. It is obvious that fermentation of seed cake resulted in substantial increase of phosphorus. The seed cake and fermented slurry of Jatropha seed were tested as bio-fertilizer. Similar doses of both Seed cake and fermented slurry were used (5, 10 and 20t/hectare). Both components were tested using sorghum plants. The bio-fertilizers were applied 30 days after sowing. The higher doses of the seed cake resulted in complete loss of the sorghum plants. There is no difference between the control and the lower doses. On the other hand the fermented slurry caused an increase in number of leaves stem diameter and plant height. It could be concluded that the toxicity of seedcake can be removed by fermentation. Microbiological investigation indicated that the microorganisms involved in the fermentation process were Bacillus and Lactobacillus bacteria.

Keywords: seed cake, Jatropha seed, bio-fertilizer, chemical analyses

1 Introduction

Seed cake or press cake is a byproduct of oil extraction from Jatropha seeds. Jatropha Seed cake contains curcin, a highly toxic protein similar to ricin in castor, making it unsuitable for animal feed. However, it does have potential as a fertilizer or substrate for biogas production (Gübitz, Mittelbach, & Trabi, 1999). The defatted meal has been found to contain a high amount of protein in the range of 50–62%, and the level of essential amino acids except lysine is higher than the FAO reference protein Makkar, Becker, and Schmook (1998). Being rich in nitrogen, the seed cake is an excellent source of plant nutrients. In a green manure trial with rice in Nepal, the application of 10 tones of fresh physic nut biomass resulted in increasing yield of many crops Sherchan, Thapa, Khadka, and Tiwari (1989).

Experiments on use of biogas slurry as a fertilizer are still in the early stages. Recently experimentation on solid-state fermentation of Jatropha seed cake showed that, it could be a good source of low cost production of industrial enzymes Mahanta, Gupta, and Khare (2008). Due to toxicity, seed cake can neither be used as animal feeding nor in agricultural farming.

2 Methodology

2.1 The Chemical Determination of Seed Cake and Slurry

The chemical composition of seed cake and slurry of seed cake was determined following AOAC methods (Table 1). The minerals were determined according to Chapman Pratt and Chapman (1961).

Parameters	N (%)	P (%)	K (%)
Seed cake	6.3	0.9	1.1
Slurry	6.65	5.3	0.71

Table 1. he chemical composition of seed cake and slurry

2.2 Biochemical Test

Slurry samples were taken and cultured on Nutrient Agar. The bacterial colonies obtained were subjected to different biochemical tests.

2.3 Experimental Site and Design

An experiment was carried out at Botanical Garden, Faculty of Agriculture, University of Khartoum. The experiment carried out in CRD with 3 replicates. Both seed cake and digested slurry were applied each in 3 doses, 5, 10 and 20t/ha. The treatments were applied one month after sowing. Sorghum plants were sown in pots containing sterilized soil. Measurement of parameters (number of leaves, stem diameter and plant height) was carried out twice. The first reading was done 7 days after the application of the treatments and the second after 14 days.

3 **Results and Discussion**

The chemical analysis showed that the nitrogen content of the digested slurry was slightly higher than the seed cake. With regard to potassium content the seed cake has high potassium content compared to the fermented slurry. The fermented slurry contained very high phosphorus which was six times that of the seed cake. The possibility of using seed cake and fermented slurry as biofertilizers was investigated using sorghum plants. Both components were applied at similar rates (Figure 1).

(b)

IJEAT © 2018 www.Inter-Journal.nusaputra.ac.id/IJEAT

(c)

Figure 1. (a) The effect of different doses of SL (5, 10 and 20 t/ha), (b) The effect of different dozes of JSC (5, 10 and 20 t /ha on sorghum, (c) The effect of different doses of SL (5, 10 and 20 t /ha) compared to the control.

Table 2. Means of plant parameters number of leaves stem diameter and plant
height (cm) after 7 days

Parameters	Number of leaves	Steam diameter	Plant height (cm)
	(cm)	(cm)	
JSC1 = 5 tons/ha	6.0	3.3	42.0
JSC2 = 10 tons/ha	0.0	0.0	0.0
JSC3 = 20 tons/ha	0.0	0.0	0.0
SL1 = 5 tons/ha	8.0	3.0	53.0
SL2 = 10 tons/ha	8.0	3.7	68.7
SL3 = 20 tons/ha	6.0	2.0	38.3
Control	7.0	2.3	61.7

The higher seed cake treatments (10 and 20 t/h) resulted in complete death of the sorghum plants after 7 days. In case of the lower dose of seed cake (5t/h) the number of leaves, stem diameter and plant height remained constant and less than both control and fermented slurry treatments throughout the experiment period. The addition of fermented slurry resulted in high number of leaves, thick stem and taller plants. No significant differences were observed between digested slurry treatments but the highest dose gave the least values in comparison with the lower and intermediate doses after 7 days. After 14 days both the lower and the highest doses of digested slurry gave high number of leaves and taller plants (Table 2 and Table 3).

Parameters	Number of leaves	Steam diameter	Plant height (cm)
	(cm)	(cm)	
JSC1 = 5 tons/ha	6.0	3.3	65.0
JSC2 = 10 tons/ha	0.0	0.0	0.0
JSC3 = 20 tons/ha	0.0	0.0	0.0
SL1 = 5 tons/ha	10.0	4.7	84.3
SL2 = 10 tons/ha	8.0	3.7	73.0
SL3 = 20 tons/ha	8.0	4.3	78.0
Control	7.0	2.3	68.0

Table 3. Means of plant parameters number of leaves stem diameter and plant height (cm) after 14 days

Many researchers reported that the Jatropha seed cake is toxic to both plants and animals) Gollakota, and Jayalakshmi, 1983 and Nwosu and Okafor, 1995). The seed cake can neither be used as animal feed nor in agricultural farming due to this toxicity, (Gübitz et al., 1999; Staubmann et al., 1997). Jatropha Seed cake contains curcin, a highly toxic protein similar to ricin in castor making it unsuitable for animal feed. Sherchan et al., (1989) stated that the application of 10 tones of Jatropha seed cake resulted in increasing yield of many crops. In order to utilize this seed cake the toxicity must be removed. One of the ways to remove the toxicity is through fermentation to produce biogas and to use the digested slurry as bio-fertilizer. Gollakota Gollakota and Jayalakshmi (1983) stated that the generation of biogas from seed cake is a best solution for its efficient utilization. Table 4. Statistics number of leaves, stem diameter and plant heighest of Sorghum

Treatments	Number of leaves	Steam diameter	Plant height (cm)
	(cm)	(cm)	
Control	7.7ab	3.7ab	68.0ab
JSC1 = 5 tons/ha	9.0ab	4.0ab	65.0ab

JSC2 = 10 tons/ha	0.0c	0.0c	0.0c
JSC3 = 20 tons/ha	0.0c	0.0c	0.0c
SL1 = 5 tons/ha	10.0ab	4.7ab	84.4ab
SL2 = 10 tons/ha	8.0ab	4.4ab	73.0ab
SL3 = 20 tons/ha	10.0ab	4.4ab	79.4ab

Means with same letter in each column were not significantly different (P<0.05).

The biodigestion of seed cake by fermentation process indicated an increase in both nitrogen and phosphorus and a decrease in the potasssium. Raheman and Mondal (2012) reported that the biodigetion of JSC resulted in an increase in ntirogen content while both phosphorus and potassium remained unchanged. They attributed that to decomposition of protein. Our finding agreed partially with this result a far as nitrogen is concerned and diagreed in case of phosphorus which was increased after biodigestion of the JSC. It is worth mentioning that the phosphorus content of the seed cake increased almost by 30% compared with the phosphorus content of the seed. After fermentation the phosphorus content was increased enormously compared to the phosphorus content of both seed and seed cake. This increase in the phosphorus content after fermentation may be due to the microorganisms involved in the fermentaion process.

4 Conclusion

The Jtropha seed cake can not be used directly as bio-fertilizer. The toxicity of Jatropha seed cake can be removed by fermentation. The biodigestion of JSC increased nitrogen and phosphorus contents.

References

- Gollakota, K., & Jayalakshmi, B. (1983). Biogas (natural gas?) production by anaerobic digestion of oil cake by a mixed culture isolated from cow dung. *Biochemical and biophysical research communications, 110*(1), 32-35.
- Gübitz, G. M., Mittelbach, M., & Trabi, M. (1999). Exploitation of the tropical oil seed plant Jatropha curcas L. *Bioresource technology*, *67*(1), 73-82.
- Mahanta, N., Gupta, A., & Khare, S. (2008). Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation

using Jatropha curcas seed cake as substrate. *Bioresource technology*, *99*(6), 1729-1735.

- Makkar, H. P., Becker, K., & Schmook, B. (1998). Edible provenances of Jatropha curcas from Quintana Roo state of Mexico and effect of roasting on antinutrient and toxic factors in seeds. *Plant Foods for Human Nutrition*, *52*(1), 31-36.
- Pratt, P., & Chapman, H. (1961). Gains and losses of mineral elements in an irrigated soil during a 20-year lysimeter investigation. *Hilgardia*, *30*(16), 445-467.
- Raheman, H., & Mondal, S. (2012). Biogas production potential of jatropha seed cake. *Biomass and bioenergy*, *37*, 25-30.
- Sherchan, O., Thapa, Y., Khadka, R., & Tiwari, T. (1989). Effect of green manure on rice production. PAC Occasional Paper-2, Ohankuta, Koshi Zone, Nepal.
- Staubmann, R., Foidl, G., Foidl, N., Gubitz, G., Lafferty, R., & Valencia, V. (1997). Production of biogas from Jatropha curcus seeds press cake. Paper presented at the Symposium on Jatropha.